Ca2+ and K+ channels of normal human adrenal zona fasciculata cells: Properties and modulation by ACTH and AngII
نویسندگان
چکیده
In whole cell patch clamp recordings, we found that normal human adrenal zona fasciculata (AZF) cells express voltage-gated, rapidly inactivating Ca(2+) and K(+) currents and a noninactivating, leak-type K(+) current. Characterization of these currents with respect to voltage-dependent gating and kinetic properties, pharmacology, and modulation by the peptide hormones adrenocorticotropic hormone (ACTH) and AngII, in conjunction with Northern blot analysis, identified these channels as Cav3.2 (encoded by CACNA1H), Kv1.4 (KCNA4), and TREK-1 (KCNK2). In particular, the low voltage-activated, rapidly inactivating and slowly deactivating Ca(2+) current (Cav3.2) was potently blocked by Ni(2+) with an IC50 of 3 µM. The voltage-gated, rapidly inactivating K(+) current (Kv1.4) was robustly expressed in nearly every cell, with a current density of 95.0 ± 7.2 pA/pF (n = 64). The noninactivating, outwardly rectifying K(+) current (TREK-1) grew to a stable maximum over a period of minutes when recording at a holding potential of -80 mV. This noninactivating K(+) current was markedly activated by cinnamyl 1-3,4-dihydroxy-α-cyanocinnamate (CDC) and arachidonic acid (AA) and inhibited almost completely by forskolin, properties which are specific to TREK-1 among the K2P family of K(+) channels. The activation of TREK-1 by AA and inhibition by forskolin were closely linked to membrane hyperpolarization and depolarization, respectively. ACTH and AngII selectively inhibited the noninactivating K(+) current in human AZF cells at concentrations that stimulated cortisol secretion. Accordingly, mibefradil and CDC at concentrations that, respectively, blocked Cav3.2 and activated TREK-1, each inhibited both ACTH- and AngII-stimulated cortisol secretion. These results characterize the major Ca(2+) and K(+) channels expressed by normal human AZF cells and identify TREK-1 as the primary leak-type channel involved in establishing the membrane potential. These findings also suggest a model for cortisol secretion in human AZF cells wherein ACTH and AngII receptor activation is coupled to membrane depolarization and the activation of Cav3.2 channels through inhibition of hTREK-1.
منابع مشابه
Ca and K channels of normal human adrenal zona fasciculata cells: Properties and modulation by ACTH and AngII
In mammals, adrenal zona fasciculata (AZF) cells of the adrenal cortex secrete glucocorticoids in a diurnal pattern in response to stimulation by adrenocorticotropic hormone (ACTH). Superimposed on this basal secretory pattern, physical and psychological stress triggers bursts of ACTH-stimulated cortisol production by activation of the hypothalamic pituitary adrenal axis (Stewart and Krone, 201...
متن کاملAngiotensin II potentiates adrenocorticotrophic hormone-induced cAMP formation in bovine adrenal glomerulosa cells through a capacitative calcium influx.
Angiotensin II (AngII) plays a crucial role in the control of aldosterone biosynthesis in adrenal glomerulosa cells through the stimulation of two distinct Ca2+ entry pathways: (1) opening of voltage-operated calcium channels, and (2) activation of a capacitative Ca2+ entry that is dependent on calcium release from intracellular pools. Adrenocorticotrophic hormone (ACTH), on the other hand, a m...
متن کاملDifferential production of adrenal steroids by purified cells of the human adrenal cortex is relative rather than absolute.
OBJECTIVES The adrenal cortex produces aldosterone, cortisol and androgens in response to ACTH and angiotensin II. To define the differential response of morphologically distinct cells of the adrenal cortex, we examined the phenotypical and functional characteristics of human adrenocortical cells. RESULTS Tumour growth factor-beta receptor-1 (TGFbeta-R1) and CYP-11 were found to be expressed ...
متن کاملAdrenal fasciculata cells express T-type and rapidly and slowly activating L-type Ca2+ channels that regulate cortisol secretion.
In whole cell patch-clamp recordings, we characterized the L-type Ca(2+) currents in bovine adrenal zona fasciculata (AZF) cells and explored their role, along with the role of T-type channels, in ACTH- and angiotensin II (ANG II)-stimulated cortisol secretion. Two distinct dihydropyridine-sensitive L-type currents were identified, both of which were activated at relatively hyperpolarized poten...
متن کاملAdrenocorticotropic hormone and cAMP inhibit noninactivating K+ current in adrenocortical cells by an A-kinase-independent mechanism requiring ATP hydrolysis
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone (ACTH) at picomolar concentrations. Inhibition of IAC may be a critical step in depolarization-dependent Ca2+ entry leading to cortisol secretion. In whole-cell patch clamp recordings from AZF cells, we have characterized properties of IAC and the signalling pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 142 شماره
صفحات -
تاریخ انتشار 2013